Nugget of DMR-Funded Work:

Controlled Porosity by Rearrangement of a Diblock Copolymer Brush

Experimental system: SiO_2 /poly(methyl acrylate)-*b*-poly(pentafluoropentyl acrylate) brush on a glass frit (8-10 µm porosity) – brush thickness = 13 nm *Results*: water contact angles indicated a change in the surface composition that was induced by treatment with block-selective solvents or supercritical CO_2

Implications: we have used a glass frit as a model for microfluidic channels...these results demonstrate that diblock brush rearrangement can alter flow...diblock brush rearrangement can be induced by compositional changes in the fluid

$$\theta_{\rm s}$$
 (sessile) = 135°
 $\theta_{\rm a}$ (advancing) = 168°

$$\theta_{\rm s}$$
 (sessile)= 92°
 $\theta_{\rm a}$ (advancing) = 110°

Poly(pentafluoropentyl acrylate) at surface

Poly(methyl acrylate) at surface

William J. Brittain (PI) and A. Granville, The University of Akron, DMR-0072977